
Mango’s Word Search
By Julio Madrigal

IMPORTANT: This is the Updated Version 
of My Presentation Which Documents 
Why I Created The Slides the Way I Did



Definition and requirements
▪ The user should be able to choose or create a word list.
▪ Words are randomly hidden in the array of letters, count 

number of overlaps to make certain complex.
▪ The user should be able to view the word list and know 

which have been found and which are not yet found.
▪ The player identifies and marks the found words in an 

appropriate visual manner.
▪ The player can ask for a hint.
▪ The player should be able to quit and return to the game 

later. (In Progress)
▪ The puzzle can be scrambled and played again.
▪ The player should be able to obtain additional word lists 

from a server without reinstalling the app. (In Progress)

I used this slide to explain what my project needed to 
have/accomplish



Solution

▪ Android Studio that uses Java and XML
▪ Android 10 Q (API 29)
▪ Title Screen, GamePlay Activity, Result Activity

I could have gone more in depth when presenting this slide, but I 
wanted to aim for the general audience. I could have explained that the 
GamePlay activity is where my Word Search Board generation 
algorithm will be operating in and that the Result screen will show the 
words you were working with and that the Title screen will include 
various options for the user. I could have went through each 
requirement and identify where and when each requirement is met as 
well.



Exceptions

▪ Save Game
▪ Import

I did pretty well with this slide as I 
explained that I did not have these 
ready but I had ideas for them. For 
Save Game I mentioned that I could 
use onSaveInstance and 
onRestoreInstance. However, I 
learned through my defense that I 
did it the wrong way and now I 
know for the future to save what 
the user has done through a file or 
as I have researched through a 
function called 
sharedPreferences(). For Import I 
mentioned that I will do an 
Asynchronous task in the 
background to access the server to 
grab word lists from.



EXPLANATION FOR NEXT FEW SLIDES
I did not talk about the algorithm that was implemented into my 
WordSearchBoardView library as to keep it simple and avoid 
confusion with the audience. Furthermore, CS majors/minors 
are familiar with C++ so this was a great way to explain the 
algorithm. I will be explaining how the algorithm was 
implemented in the library in detail in my binder.

I did below average in explaining how the WordSearchBoardView 
library functioned during my defense and I was going through 
something personal that week, my apologies. However, I will 
demonstrate my knowledge of the library in the binder.



T R

I E A

M A N G O

T T P D

O

H O

T L

E

M

M
E
T
H
O
D
S

This was my old algorithm 
which I was initially going to 
do. You can overlap on any 
character of the word you 
are trying to place on the 
board. If it finds a common 
character with another word, 
it will try all 8 directions to 
see if it can fit. If it fails to 
fit, it will randomly place it 
on the board. In this 
example, all words have a 
character in common with at 
least one other word. Mango 
was placed first.

I got stuck and made it too 
complex. I met with Dr. McVey 
and she suggested a different 
way of doing things



T D

X S L

I E O

M A N G O

A

R E C O N

S A L T

M
E
T
H
O
D
S

I ended up going with Dr. 
McVey’s way of doing this as it 
allowed me to save time and 
focus on the rest of my app. 
This new algorithm only looks 
at the first letter of every 
word trying to be placed on 
the board. It gets the job done 
despite less complexity. In the 
future I can possibly make my 
old algorithm work but I 
prioritized the completion of 
my app. (Thanks Dr. 
McVey-Pankratz)

Now I am going to show a data flow diagram of how 
this new algorithm works.



I updated my Data Flow Diagram as my 
prior Diagram did not depict the 
algorithm accurately.

This is how the Word Search Board was 
generated.

Next, I will show a visual of the 
algorithm created in C++ to better 
depict what the algorithm was 
essentially doing as this will be hidden 
from the user when playing the game



A 2-D Array is created and filled with the character * and then the algorithm goes to 
work. It goes through the whole board to find a common character. The first word 
being placed will never have a character in common with anything on the board as 
there are just character *’s so it places the word randomly. trying all 8 directions, 
otherwise randomly place the word. Tries direction indicated and hypothetically 
places the word on the board then actually places it once locations are valid. 



Demo



Strategies

▪ Independent
▪ Documentation
▪ Professors
▪ Trial and Error
▪ CSCI 350 Event 

Programming in 
Windows

I explained here how I came about my solutions. I was 
independent most of the time as I wanted to test my ability 
to work independently but I may have overdone it as I felt like 
I wasted more time than I expected which hurt my final 
product in the end, but lesson learned. I read the 
documentation on the WordSearchBoardView library. Dr. 
McVey had more knowledge with Android Studio so I went to 
her mainly. Trial and Error were helpful in figuring out small 
bugs such as syntax errors and infinite loops rather than 
going online/to professors for help. And of course my 
previous class using Android Studio helped especially with 
initially starting as I could look at prior code and build on it.



Extensions

▪ Complex Algorithm
▪ Animations
▪ Difficulty
▪ Score w/ Timer
▪ Save Files

I would have loved to complete the old algorithm I had 
going as it look at all the characters of the words 
when trying to find a character in common. The 
person who gets this project after me should 
definitely try to figure out this more complex 
algorithm. The animations I have in my application 
are basic and for the person who will get this in the 
future they can strive to create more innovative 
animations like those you see in the app store now 
adays. Furthermore, a difficulty selection would be 
great as it will allow the user to get a challenge. I 
would start with Easy, Medium, Hard difficulties. A 
score that is affected by the timer’s remaining time 
will be a great feature to add and also a leaderboard 
to keep track of high scores. Save files would be good 
to allow for multiple games to happen at once.



Thanks!

Any Questions?



Word Search Library

BoardPoint

Specific point on the 
board containing row 
and column of that 
specific point

BoardView

Draws and Measures 
each Tile to fit on the 
Board

BoardWord

Every word on the 
Board has its direction 
and 
startPoint(BoardPoint) 
which is used heavily 
in the algorithm

WordSearchBoardView

Does the generation of 
the Word Search Board 
using an Algorithm as well 
as Touch Events

I included this slide at the end in case someone asked how I created the grid or how the algorithm 
works in my application. Unfortunately I did not get to this slide.


